
Computer Science / Mathematics 340
General Information

Instructor: Steven Lindell Office: Link 308
 (610) 896-1203 slindell@haverford.edu

Title & Description: Analysis of Algorithms (cross-listed in Mathematics and Computer Science)
 Algorithmic design and analysis, sorting, searching, data structures, graph

algorithms – including a partial introduction to parallel algorithms. The emphasis
will be on correctness and complexity.

Class schedule & room: Lecture MW 12:30-2:00 Discussion F 12:30-2:00 both in Link 310

Consultation hours: MW 2:00-3:00 and also by appointment. You can even call me at home using

NetMeeting which allows sharing written information.

Text: Introduction to the Design and Analysis of Algorithms, Anany V. Levitin, Villanova

University, 2nd edition ©2007.

Supplementary reading: Introduction to Algorithms Corman, Leiserson, Rivest

Computer Algorithms Sara Baase © 1988.

Prerequisites: Computer Science 206 (or comparable experience programming).

Grading: Homework 30% (includes class participation)
(discuss 50% rule Midterm 30% (one take-home examination)
for points) Final 40% (cumulative)

Homework: Weekly exercises -- late homework problems will be downgraded approximately

1/3 per day. Your work should be neatly and clearly presented, as these are very
important in the grading (and learning) process. The solutions you hand in should
be understandable to someone who knows the material, but not necessarily your
approach. Not doing (or at least trying) all the homework is a good recipe for a
poor (or failing) grade. All late homework must be complete before any exam.

Rules and regulations: Everything turned in for a grade must be your own work, although collaboration on

problems is strongly encouraged (especially working in groups). Spoken and
scribbled ideas on how to solve homework problems may be exchanged, but not
detailed written solutions. You must write up your own solutions and should
acknowledge your collaborators. You may use the Internet only if the problem's hint
suggests that you do so, but you still must cite the source and put it into your own
words. There is no assistance or help allowed on the examinations.

Special accommodations: Students who think they may need accommodations in this course because of the

impact of a disability are encouraged to meet with me privately early in the
semester. Students should also contact Rick Webb, Coordinator, Office of
Disabilities Services (rwebb@haverford.edu, 610-896-1290) to verify their
eligibility for reasonable accommodations as soon as possible. Early contact will
help to avoid unnecessary inconvenience and delays.

Syllabus

(from book preface)

Lecture Topic Sections

1 Introduction 1.1-1.3

2, 3 Analysis framework; O, Θ, Ω notations 2.1-2.2

4 Mathematical analysis of nonrecursive algorithms 2.3

5, 6 Mathematical analysis of recursive algorithms 2.4-2.5+App. B

7 Brute-force algorithms 3.1-3.2(+3.3)

8 Exhaustive search 3.4

9-10 Divide-and-conquer: mergesort, quicksort, binary search 4.1-4.3

11 Other divide-and-conquer examples 4.4 , 4.5, or 4.6

12-14 Decrease-by-one: insertion sort, DFS & BFS, topological sorting 5.1-5.3

15 Decrease-by-a-constant-factor algorithms 5.5

16 Variable-size-decrease algorithms 5.6

17-19 Instance simplification: Presorting, Gaussian elimination, balanced search trees 6.1-6.3

20 Representation change: heaps and heapsort or Horner’s rule and binary exponentiation 6.4 or 6.5

21 Problem reduction 6.6

22-24 Space-time tradeoffs: string matching, hashing, B-trees 7.2-7.4

25-27 Dynamic programming algorithms 8.1-8.4

28-30 Greedy algorithms: Prim’s, Kruskal’s, Dijkstra’s, Huffman’s 9.1-9.4

31-33 Iterative improvement algorithms 10.1–10.4

34 Lower-bound arguments 11.1

35 Decision trees 11.2

36 P, NP, and NP-complete problems 11.3

37 Numerical algorithms 11.4 (+12.4)

38 Backtracking 12.1

39 Branch-and-bound 12.2

40 Approximation algorithms for NP-hard problems 12.3

